DO NOW

pg 16; 1 - 6

Page 1

1.2 Linear Models and Rates of Change

Slope - of a the nonvertical line passing through (x_1, y_1) and (x_2, y_2) is:

$$m = \frac{\Delta y}{\Delta x} = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{y_1 - y_2}{x_1 - x_2}$$

vertical line -> slope is undefined

Page 2

Equations of Lines

Standard form: $A \times + B_y = C$

General form: Ax + By + C = O

Slope Intercept form: y=mx+b

Point Slope form: $\frac{y-y_1 = m(x-x_1)}{x}$ Intercept form: $\frac{x}{a} + \frac{y}{b} = 1$ $a \leftarrow x$ -intercept

Vertical Line: X=0

Horizontal Line: γ =b

Ex: Write an equation in general form for each of the following sets of given information.

1. point (-2, 4) and $m = -\frac{3}{5}$

point-slope

1. point (-2, 4) and
$$m = -\frac{3}{5}$$
 $y - y_1 = m(x - x_1)$
 $5[y - 4] = -\frac{3}{5}(x + 2)]$
 $5y - 20 = -3(x + 2)$
 $5y - 20 = -3x - 6$
 $3x + 5y - 14 = 0$

2. x-intercept = 5 and y-intercept = -3 intercept form

 $\frac{x}{a} + \frac{y}{b} = \frac{1}{3}$

$$\left(\frac{\frac{x}{5} + \frac{y}{3} = 1}{5}\right)$$
15
3x-5y=15

The slope of a line can be interpreted as a ratio or rate.

and is a RATIO.

Ratio-If x by axis have the same units of measure, the slope has no units

Rate-If x : y axis have different units
of measure, the slope has units
(of the form: _____ per _____)
and is a <u>RATE</u>.

Page 3

 $y-y_1 = m(x-x_1)$ y-5=3(x-2)

point-slope

Page 5

Perpendicular lines -

Ex: 4. Write the equation in general form of the line through the point (-2, 1) and $\underline{\text{parallel to } 2\text{y} - 6\text{x} = 9}$

Page 7

5. Write an equation in general form of the line through the point (-2, 1) and perpendicular to the line 2y - 6x = 9

$$y-y_1 = m(x-x_1)$$

$$y-1 = -\frac{1}{3}(x+2)$$

$$3y-3 = -(x+2)$$

Page 8

HOMEWORK

pg 16 - 17; 9, 11, 13, 23, 25, 26, 27, 31, 35, 45, 55, 59

*** Do not sketch the graph for 27, 31, 35

Page 9